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A new computational model of the edge plasma in axisymmetric
magnetic fusion devices has been developed based on finite ele-
ment methods. Braginskii-type plasma fluid equations and a one-
energy-group neutral particle diffusion equation are spatially dis-
cretized on a two-dimensional domain using Galerkin, modified
artilicial dilfusion, and anisotropic streamling-upwind/Petrov-Gal-
erkin finite element methods. A damped modified Newton method
is employed to solve the nonlinear system of discretized equations.
Results from assembled plasma/neutral systems in rectangular ge-
ometry agree quantitatively with the results froam the B2 and NEW-
EDGE finite-difference edge models and highlight the importance
of boundary conditions. Finite element analysis of angled divertor
plates illustrated the sensitivity of divertor plasma parameters and
the divertor plate heat flux profile to the details of nonorthogonal
boundary geometry, due to the neutral particle behavior and its
subsequent effect on all of the plasma quantities. © 1995 Academic
Press, Inc,

L. INTRODUCTION

The edge plasma in a magnetic fusion device (also referred
to as the boundary plasma or scrape-off layer) is a region of
transition between the high-temperature, dense core plasma and
the physical walls of the vacuum vessel enclosing the plasma.
A number of interrelated phenomena typically occur in the edge
region of plasma devices. The energetic particle efflux and
conductive energy flow from the core plasma provides the
sources of particles and energy to the edge region. Particles
are eventually removed by the active pumping of neutrals out
of the vacuum vessel, while the plasma heat flux is removed by
cooling the plasma-lacing components. In general, a thorough
understanding of edge plasma physics is necessary from both
engineering and physics standpoints. Control of the particle
and energy fluxes in the edge plasma is a critical design issue
for high-power fusion devices such as the International Thermo-
nuclear Experimental Reactor (ITER) [1].

Modeling of the edge plasma is therefore a critical and com-
plex issue for near-term magnetic fusion devices. At this point,
there is no comprehensive model incorporating all of the rele-
vant physical processes. However, models of the edge plasma
have evolved from analytical descriptions {o one-dimensional
single species models o two-dimensional multi-fluid models
with realistic geometry. The primary two-dimensional edge

plasma model in use today is B2, developed by Braams [2].
Features of the B2 code (in its most widely distributed form)
include orthogonal curvilinear meshes, multiple ion species
capability, analytic neutrals treatment, and diffusive cross-field
transport. Vold [3] has presented results from his EPIC code
which features orthogonal meshes generated from plasma equi-
libria, time-dependence, a relaxation technigque similar to ihat
used by Braams, and a one-group neutral particle diffusion
model. The NEWEDGE code by Knolt [4], like the Braams
model, uses finite volume discretization on an orthogonal mesh,
but Newton’s method is used to iteratively solve the system of
nonlinear algebraic equations.

For finite difference techniques, at least a 9-point stencil is
required to accurately include nonorthogonal geometry in two
dimensions. To allow the use of more convenient 5-point finite
difference stencils, the typically irregular geometry inherent to
the edge region is often modeled as if the boundaries were
parallel or perpendicular to the magnetic field, lcading either
to gross inaccuracies in the model boundary or to the use of
stair-step boundaries. In either case, geometric inaccuracy is
introduced in the region of greatest plasma/neutral activity.
Also, the plasma-facing surface boundary conditions are the
most complex, incorporating sheath physics and the treatment
of neutral recycling processes. The primary motivation for con-
sidering finite element methods which (a) very naturally admit
flexible geometry and (b) directly incorporate derivative-type
boundary conditions, is therefore a desire to more accurately
represent the recycling region boundary for limiter or di-
vertor configurations,

Having introduced the essence ol the edge modeling prob-
lem and the expected advantage of applying the finite element
method, the remainder of the article is devoted to the
development of a finite element plasma edge code. A summary
of the preliminary assumptions and differential equations
defining the edge physics model is given in Section 1L
Discussions of the relevant finite element methods, the re-
sulting forms of the plasma edge equations, and the techniques
used to solve the nonlinear discretized equations are presented
in Section IH. Extensive testing of the finite element code
and an application to angled divertor plates are described in
Section IV. Section V summarizes the capabilities of the
present model as well as the areas for future improvement.
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II. PHYSICS MODEL

Although a global model incorporating all relevant edge
processes would be ideal, a tractable problem must limit its
scope to a subset of the important phepomena. A number of
basic assumptions have been made regarding the physics of
the tokamak plasma edge for the purpose of developing the
present model. These include:

{a) steady-state conditions apply,
(&)

(c) the plasma is composed of a single hydrogenic ion
species and electrons,

(d) = ﬂj),
(e) the plasma is current-free (i.e., V. = V),

axisymmetry applies,

the plasma is quasineuiral (i.e., #,

(f) plasma flow along magnetic field lines may be described
by classical collisional theory,

(g) plasma flow transverse to magnetic field lines is diffu-
sive and often anomalous in nature, and

(h) neutral particles are described by one-energy-group dif-
fusion theory.

The five basic plasma variables considered by the current
model are:

{a) r = ion density (m™),

(b) u = parallel ion fluid velocity (m s™*),
{c} T = ion temperature (Joules),

(d) T, = electron temperature (Joules), and
(e} n, = newral particle density (m™*).

The equations presented below for the plasma fluid conserva-
tion relations are thus a simplification of the equations solved
by Braams, which followed the treatment of Braginskii [5],
allowing for particle sources. The rectangular coordinate system
in which the equations are presented is oriented such that the
x-axis is everywhere parallel to the poloidal magnetic field
lines, while the y-axis is everywhere orthogonal to x (pointing
in an outward approximately radial direction).

Particle balance.

d i
= () + — (m0) = §, 1
o (nu) ay(m’) s (1
where
u = poloidal ion fluid velocity (x-velocity) (m s,
v = transverse ion fluid velocity {y-velocity) (m s™'),
S, = ton source (m~s7").

The transverse ion flux, »nv, is assumed to be diffusive
nature, given by the relation [2]

[

n
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(2

where

D, = density gradient diffusion coefficient (in’s™"),
D, = pressure gradient diffusion coefficient (m?*™'), and
U= diffusion velocity due to other sources {ms ™).

Parallel momentum balance.

By o
m V- (uyV)y =V nVu=— E@B_x (a(i+ 7)., (3

where

m; = ion mass (kg),

7) = ion viscosity tensor (kg m™%™"),

V = ue, + ve,(m s™'), and

By/B = ratio of poloidal-to-total magnetic field.

Electron energy balance.
V- (GnVT, -k VT) =V - Y(nT) ~ ko (T. — T) + S, (4)
where

x, = electron thermal conductance tensor (m~'s™Y),

k., = lJon-electron temperature equilibration coefficient
{m~¥7'), and

§% = &8, = electron energy source (I m™87Y), and &, is the
energy loss per ionization event.

Ton energy balance.

v- (%nVT, — K VTI + %minuﬁv - %7] Vulf) (5)
+ V- V(T — kT, T) = Sk,

where

&, = ion thermal conductance tensor (m~'s™!), and
SL = g8, = ion energy source (J m~3S7h), and & is the
energy gain per ionization event.

Neutral particle diffusion.  Vold [3] gives a complete deri-
vation of the one-group neutral particle diffusion equation and
the computational results which justify its ause. The simple
equation governing the neutral density, #,, is

-V-D,Vn,= -85, (©)
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where

D,, = 8T./3nnm,({g v ). + {(ov )} = One-group neutral parti-
cle diffusion coefficient (m’s™")

S, = nn, {ov), = ionization sink for neutrals,

{ou), = the electron-impact ionization rate,

{ou), = the charge-exchange reaction rate.

It is the approximate solution of this system of highly nonlinear
particle differential equations via the finite element method that
is the subject of Section Il

III. NUMERICAL METHODS

A number of numerical techniques must be brought to bear
upon the system of nonlinear differential equations defined in
Section II to yield an approximate solution. This section will
describe in some detail each of the various methods used. First,
the finite element spatial discretization of a generic advection-
diffusion equation is presented, including the standard Galerkin
weak form, as well as upwind finite element methods. Next,
the weak forms of the governing equations are described. Fi-
nally, the Newton iteration method is presented as a means to
self-consistently solve the nonlinear discretized system of equa-
tions.

IIL.A. Finite Element Form of a Convection-Diffusion
Equation

The first step in the solution of the given system of nonlinear
partial differential equations via the finite element method is
the derivation of weak forms of the equations. As an example,
consider a general convection-diffusion problem, the strong
form of which is stated as

Given f(x), o(x), a(x), K(x), ¢,(x), and ¢(x), find ¢:

a-Vop—V - KVd+od=f onfl (7a)
¢ = ¢, (x) onT, (essential boundary condition) (7o)
KV ¢ =q(x) onl,(natural boundary condition), {7c)

where

a(x) = convection vector,

K(x} = diffusion tensor,

JF(x) = source term,

a(x) = linear term, and

T =T, UTI,is the boundary of the domain ).

Before proceeding, two categaries of functions must be iden-
tified. The first set, known as the trial functions, will contain
the solution function ¢, and thus is required to satisfy the
boundary condition of Eq. (7b). It will also be required that

VESEY AND STEINER

the trial functions are H' functions; that is, the function and
its derivatives are integrable. The second set of functions, de-
noted by ¥, comprises the weighting functions, which are aiso
required to be members of H'. Also, the weighting functions,
w, are required to satisfy w(T';} = 0. Practically, these require-
ments ensure that the integrals in the resulting weak form are
all finite and that on the portions of the domain boundary on
which the primary variable is fixed (I',) the weighting function
has the value zero.

In the basic weighted residual technique [6, 7], a suitable
weak form may be derived by first multiplying the goveming
eguation by an arbitrary weighting function and then integrating
the result over the entire domain. The application of vector
identities and the divergence theorem reduces the order of
derivatives in some terms and also yields boundary integrals,
into which known (linear or nonlinear) boundary conditions
may be substituted. For the example convection-diffusion equa-
tion, the resulting weak form is:

Given f(x), o(x), a(x), K(x), ¢,(x), and q(x), find ¢ € &
such that for aill w € ¥:

J'nw(a- Vo + o) dd — fnw_q-ndl“
+[ Vw KVgan = [ wrda. 8)

The domain, (), on which the problem is to be solved, is
decomposed into a set of subdomains, or elements. On each
element, approximate solution functions ¢* and weighting func-
tions w* will be chosen to be composed of a linear combination
of shape functions and associated weighting factors,

w=gmm¢ (%)

wh = 3 NOws, (10)
a=1

where the shape functions N,(x) are precribed to be simple
polynomials and the ¢, are the solution values at discrete points,
After evaluating and properly assembling all of the element
weighted residual integrals, a global system of algebraic equa-
tions is obtained to be solved for the vector of unknowns ¢ {(a
vector which contains the ¢, values for the assembly of all
elements). The process described above is the standard (Galer-
kin} finite element meihod which produces the approximate
solution ¢*.

The Galerkin method performs quite well for the convection-
diffusion problem if the solution is regular (well-behaved), or
if sharp internal or boundary layers exist in the solution and
the finite element mesh is sufficiently refined to capture these
layers. If changes in the exact solution occur over a scale-
length that is small, compared with the element dimension,
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then the Galerkin solution exhibits large-magnitude oscillations
which propagate globaily, destroying the accuracy of the
method. This observation has prompted the development of
finite element techniques specialized for convection-dominated
problems, two of which are sommarized below. With these
methods, inaccuracies in representing sharp gradients are re-
stricted to a small number of local elements, avoiding the large
oscillations produced by the Galerkin method which destroy
the accuracy of the solution on a global scale.

Modified Artificial Diffusion

To avoid the convection-dominated regime altogether in a
multidimensional problem, it is reasonable to add anisotropic
artificial diffusion based on the various velocity components
and element dimensions,

X hx

k;“=kx+|—azL— (11
i

ki=k, + Ia,zi r (12)

where k., and h, are the element dimensions in the x- and
y-directions, respectively. This choice of artificial diffusion
ensures that the element Peclet number is always less than or
equal to unity, a situation for which the standard Galerkin
method is adequate. Modified artificial diffusion will be used
for the solution of the particle balance in the x-direction, as
there is no physical D, particle diffusion.

Streamline-Upwind/Petrov—Galerkin Method

The streamline upwind/Petrov—Galerkin (SU/PG) method
[8] effectively adds artificial diffusion to the convection-domi-
nated problem, but it does so only in the upwind direction by
modifying the weighting functions such that more weighting is
applied in the upwind direction, The SU/PG weighted residual
formulation of the model convection-diffusion problem is:

Given f{x), o(x), a(x), K(x), ¢,(x), and q(x), find " € §"
such that for all w” € 9*;

[ W@ Vo + oghan - frw"q ‘ndl’
+jﬂVw”‘KV¢>’*dQ+§ (13)

Jncp(a-v¢“ — Y KVét+ oo — HdQ
=an*fdﬂ.

This form contains the standard Galerkin terms and adds a sum
of integrals of the upwind weighting function, p, multiplied by
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the convection-diffusion residual. In this way the finite element
solution is required to approximately satisfy the differential
equation in a strong and weak sense, resuiting in a method
which is more stable and accurate than the Gaterkin method.
The form of p is given by [8]

p=ma-Vwh (14)

where 7, 1s a function of the element Peclet number, « (which
is ftself dependent on {a|, k, and K), and is chosen by the
procedure in Ref. [9].

The anisotropy with regard to parallel and cross-field trans-
port in the plasma edge region requires that modifications to
the definition of the upwind weighting function be made. To
illustrate the approach, consider the general convection-diffu-
sion equation (7a) in two space dimensions with an anisotropic

diffusion tensor:
de d
K.—-|—-——IK
Bx) dy (

For typical problems of interest in edge modeling, K., K,, a,, -
and a, may vary greatly over the domain, and K, may be
orders of magnitude greater than K, . The problem is still two-
dimensional since the cross-field (y) scale lengths are much
smaller than the parallel {(x) scale lengths.

For convection-dominated problems, optimal upwind finite
¢lement methods may be applied to Eq. (15}, However, a choice
must then be made as to the definition of the element Peclet
number for use in obtaining the proper 7; values. One logical
extension of the methods presented by Hughes et el [9] is
implemented with the condition that for isotropic X, the stan-
dard method is reproduced. In defining 7, for SU/PG, the equa-
ttons for the direction-specific Peclet numbers (e, and «,), and
the weighting parameters are

@) tog=f (15)

ﬁmaa_qé_i(
)‘ay

Tax  Tay ox

@ = E‘,}(h (16)
o, = Lza%f (N
Ty = ﬁl)—{ [coth o, — —I] (18)
Ty = ] [coth oy — aiy], 19

where b = (a - V)£ and £(x) is the mapping of the actual
element geometry in x—y space to a canonical bi-unit square
element. The resulting anisotropic SU/PG weighting function
becomes ’
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wh awt
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+ —-—.
oy TS 20

Psurc =

The procedure described above will be referred to in Section
IV as **Anisotropic-1."”" Another choice is to fuily isolate the
x- and y-direction convection and diffusion terms. This invalves
defining the element Peclet numbers as

la,|h,

e 2K, (2D
|a)F1hV

*r 2K, 22)

The n, and 7, parameters are then defined according to Egs.
(18) and (19), substituting b, and by, respectively, for b, for
this variation on SU/PG, which will be called * Anisotropic-2."
The ability of these methods to accurately model anisotropic
transport will be addressed in Section IV. A for a general aniso-
tropic convection-diffusion problem and for nonorthogonai
meshes in Section IV.B. The important features of the aniso-
tropic SU/PG methods are:

{a) diffusion is added only in the upwind direciion,

(b) explicit control of the streamline derivative is provided,
so that

(¢) stability is added without sacrificing accuracy.

IILB. Weak Form of the Plasma Edge Equations

The finite element plasma edge code finds solutions to the
following weak forms, in which Galerkin and modified artificial
diffusion and/or SU/PG terms are included. In the parallel
momentum, electron energy, and ion energy balances, the parti-
cle balance has been used to substitute S, for V - n'V. This
results in differential equations of the advective-diffusive form
for which the SU/PG method was developed, but these weak
forms are of course not unique.

Particle balance.

jn W'V - nhw + V' - D Vrt — wtS,) dQ

dw" _ an’
o x Diay 49
(23a)
aT,
+ Jrjw" (JCF + n"ng - n"vm‘,) ‘n,dl
Mol
+ 5 f pRes(n") d2 =0,
=140,
where
hy = d h d h
Res(n") = — (n*uy + —(n"v) — § (23b)
ox ay
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Applicable boundary conditions include:

I', = portion of the boundary on which »* is specified.

I's = portion of the boundary on which Va* - n = § is
specified {(default),

I'j = portion of the boundary on which the cross-field particle
flux is specified as Jer.

Parallel momentum balance.

Jﬂ {w"minV Vauy -+ Vwh - g Vup
i k hBB d
+ whmS,up + w' =~ [n(T + 1] 40 (24a)
B ax

et
+
% o

ep Res(uj)d (1 = 0,

where

Res(u) = maV - Vuy — V- Vuj _
(24b)

B
+ mS,u + 2L pur T
B ox

Applicable boundary conditions include:

I’y = portion of the boundary on which u; 4 is specified.

I'. = portion of the boundary on Wthh Vu“ R =
specified (default),

Ty, = portion of the boundary on which divertor-type bound-
ary conditions are imposed, with 1) = C; (the local soundspeed).

D 1s

Elecrron energy balance.

J' w2 AV VT~ TV V25,7
n 2 2

FhT=T) = span + [ (Vw97 an
aTh
+f <qc5.-‘-—an"‘)ll "'KJ
+J ( (5 —*)HVT" )dr
dw

Ml
* ; I 0,

) (25a)

pRes(Ttyd2 = 0,
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where

Res(T%) = %nV VTE— V. VT'— TAV - Vn
(25b)
5
38T k(T —T) — St
Applicable boundary conditions include:

I'; = portion of the boundary on which T is specified.

T'; = portien of the boundary on which V7% - n = 0 is spec-
ified,

I, = portion of the boundary on which the cross-field electron
energy flux is specified as gcr, and

I'y, = portion of the boundary on which divertor-type bound-
ary conditions are imposed, with the sheath electron energy
transmission factor of 8,.

fon energy balance.

5 5
L3 . o i
L}w [2nv VT1+25',,T,

-+ %minv . Vu!f + %m,uﬁS,,] 40
h . h

+ Ll“’ [V - V(T

- eq(Te_ Tlﬁ)_ i?]dﬂ

1
+ fﬂ Vwk . l:Ki VT? + 5 k1] Vuﬁ] dﬂ
{26a)

]
+L‘w"(—ETIVu|f)-ndl"
+j wk(a—é nVT-”-ndF)

rd“ 1 2 1

+ frq wh [(q‘cr: - %an? - %minuﬁv)nv

Tt 1 du)
pa— l_+_ [
(K‘ ax 2 M ax /™ dr

et

+3 [ pResThan =0,

e=1
where

Res(ThH) =3nV - VTP + 88, T — V- 4 VT
+ tmnV Vuﬁ + %miuﬁsn {26b)

-3V P Vui + V- V(nT) — k(T — T — Sk
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Applicable boundary conditions include:

I', = portion of the boundary on which 77 is specified.

T, = portion of the boundary on which VT* - n = 0 is spec-
ified,

I, = portion of the boundary on which the cross-field ion
energy ftux is specified as g, and

Ty = portion of the boundary on which divertor-type bound-
ary conditions are imposed, with the sheath on energy transmis-
sion factor of &.

Neutral particle diffusion.

L) [Vwh D, Vri+ winni{ov),]1 d{}

11—« T;
Y w0
+jraw [2] . mi}df

- J w'RnV -ndl' =0,
rdi\r

27

where only Galerkin terms are required due to the self-adjoint
nature of the diffusion equation. Applicable boundary condi-
tions include:

Il

I'; = portion of the boundary on which #n} is specified.

', = portion of the boundary on which Marshak-type bound-
ary conditions are applied with a neutral particle albedo «, and

T4v = poriion of the boundary on which the neutral particle
flux is set equal and opposite to the incident ion flux times the
particle recycling coefficient, R,.

il

In the current version of the finite element code for which
results are presented in this paper, only quadrilateral elements
and bilinear shape functions have been used. The SU/PG
method was originally formulated for first-order shape functions
only and has been successful enough in its application that
quadratic, cubic, or higher order SU/PG elements have not
been documented. As discussed in more detail in [9], the theo-
retical L, error in the convection-dominated case for the SU/
PG method is O(h*'?). (The parameter  is the degree of the
complete polynomial used in the ¢lement interpolation func-
tions, while /4 is the mesh parameter.) However, if the exact
solution exhibits no internal or boundary layers, numerical re-
sults indicate optimal Q(h**") accuracy, the same order of accu-
racy produced by either the Galerkin or SU/PG method in the
diffusion-dominated situation. For convection-dominated cases
in which sharp layers are present, the theoretical error estimates
are obtained by the SU/PG method if one considers the entire
domain outside a small region surounding the layer. Again, the
stability of SU/PG in such cases is in contrast to the Galerkin
method for which numerical oscillations introduced by sharp
layers propagate undamped throughout the entire solution.
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II1.C. Newton Nonlinear Syétem Solver

The result of finite element discretization of the plasma edge
equations is a system of highly noniinear algebraic equations.
In genera), the system is of high dimension dye to a typically
large number of nodes, each with five variables to be deter-
mined: n, wy, T;, T,, and n,. Referring to the solution vector
for all the nodal degrees of freedom as ¢, the finite element
discretization of the system of differential equations leads to
the nonlinear algebraic system:

F(¢*) = 0. (28)
For an initial estimate, ¢", Newton’s method or a variation
thereof is expected to perform well in iteratively solving Eq.
(28) if @° is sufficiently close to ¢p*. Given an initial estimate,
Newton’s method forms a sequence of iterates by solving re-
peatedly the equation for y*, the correction vector

dF (¢*) (P! — P*) = JHy* = — F(*),

3" (29)

where the Jacobian matrix J* for iteration k has been defined as

F
Jo={l}= {2751}

The sequence is terminated once the maximum relative correc-
tion is less than some tolerance &, typically chosen to be 1075,

‘The residual vector F is a complicated function, representing
the weighted residual integrals of the various weak forms and
the appropriate boundary conditions. Therefore, the Jacobian
matrix is numerically evaluated using a forward-difference ap-
proximation,

(30)

_OF,_Fidy+ 8dy,.) = Fil d, )

Jl oL »
L 8¢

€]y

where 8¢, is a relatively small (107° to 107°) perturbation of
the degree of freedom ¢,. Numerical I evaluation is less prone
to programming errors than analytic forms for the complicated
functions involved. Also, the program strucure is not affected
by changes in the form of F (e.g., due to future modifications
of the physics model). The Jacobian is evaluated on an element-
by-element basis, so only potentially nonzero Jacobian entries
are calculated. Therefore, the CPU time spent in Jacobian evalu-
ation for a finite element mesh containing n, elements is just
proportional to ny.

The matrix equation (29) is solved using the iterative algo-
rithm GMRES (generalized minimum residual) developed by
Saad and Schultz {11], which minimizes the residual norm || —F
—~ Jy|. GMRES was developed for nonsymmetric indefinite
systems and with proper preconditioning it outperforms other
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available techniques with respect to calculation of time and
robustness. Preconditioning is applied by an incomplete LU
factorization of J. The CPU time required per linear system
solution is proportional to n,.

Several modifications of the standard Newton method have
been employed to increase the radius of convergence or acceler-
ate convergence:

(a) A search parameter modifies the updated solution vec-
tor to

S =+ syt 0<s=1. (32)

The method for determining the search parameter, s, is identical
to the one used by Knoll {4], which is due to Winkler, Norman,
and Mihalas [12] which limits the relative change in thermody-
namic variables.

(b) The number of total Jacobian evaluations is reduced
(e.g., calculating J in alternate iterations rather than in each iter-
ation). .

{c} Mesh sequencing [4] first solves the problem on a coarse
mesh (which has a large radius of convergence), transfers the
solution to be used as the initial guess for a finer mesh, and
repeats the process until a solution is obtained on a mesh fine
enough to provide acceptable accuracy.

The algorithms described above (the finite element discretiza-
tion, Newton method, and GMRES linear system solver) have
been implemented in 2 FORTRAN code written for use on
Cray computers. Input consists of the standard finite element
node coordinates, element connectivity, and boundary condition
prescriptions. The solution output was postprocessed to obtain
the 2D contour plots of plasma quantities and 1D profiles
shown below.

IV. CODE VALIDATION AND APPLICATION TO
ANGLED DIVERTOR PLATES

In order to establish the validity of the finite element method
as programmed, each individual differential equation has been
initially solved independently, For most of these tests, the
choices of rectangular coordinates, constant wansport coeffi-
cients, and boundary conditions allow the comparison of the
finite element solution to an analytic exact solution. (Further
details of these tests may be found in Ref. [10].) The purposes
of these individual equation tests were to: (a} verify that the
rate of convergence of the L finite element error corresponds
10 the value predicted by theory; (b) test and compare the
accuracy of Galerkin and SU/PG elements for a range of con-
vection~-diffusion situations. Below, the behavior of these finite
element methods will be investigated for anisotropic transport
situations on orthogonal and nonorthogonal meshes.
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IV.A. Validation of the Anisotropic SU/PG Method

One peculiarity of plasma transport in magnetically confined
configurations is the contrast in transport parallel and perpendic-
ular to the magnetic field lines. The following test case involves
a general two-dimensional convection-diffusion equation with
constant coefficients described by the equation

8¢ 9 ¥ 3’ _
uaﬂﬁ'v-@*l)x"d;;-'[)ya—zﬁo on {}. 3%
The domain (} is taken to be the unit square. Essential boundary
couditions on the entire boundary [ are applied such that the
exact solution

e e”

(I —en{i—e%)

e”™ —e'(1 — ey

{1 —e)l—e™)

d(x,y) = (34)

is produced, where r = u/D; and 5 = v/D,. The exact solution
is characterized by ¢(0, 0) = 1.0, dropping to ¢(x, y) = 0.0
on the x = 1 and y = 1 boundaries in an either gradual or
abrupt manner, depending on the convection-diffusion balance.
The parameters r and s represent the degree of convection-
dominance in the x- and y-directions, respectively. For this
example, the following choices were made:

ay u=250
by D, =10
¢}y v=10
@ D, =001

so that » = 5 (moderately convection-dominated) and s = 100
¢highly convection-dominated).

A uniform 10 X 10 finite element mesh was used to discretize
the domain, on which bilinear shape functions and 2 X 2
Gauss quadrature were applied. This problem investigated the
performance of three alternate finite element methods:

(a) modified artificial diffusion with D¥= D, + uh./2 and
D¥= D, + vh,2,

(b) SU/PG using the Anisotropic-1 prescription of Section
III.A, and

{c} SU/PG using the Anisotropic-2 formulas from Sec-
tion IILA,

A summary of the results for this case is provided in Table
Iin terms of pointwise errors, showing the superior accuracy
of the Anisotropic-2 SU/PG method relative to the other two
methods, both in the (well-behaved) interior and near the sharp
boundary layer. The modified artificial diffusion method is
stable but over-diffuse, while the SU/PG Anisotropic-2 is more
accurate than SU/PG Anisotropic-1. This occurs because for
Anisotropic-1, the definition of 7, involves the magnitude of
the vector velacity | v/, rather than |v] alone for Anisotropic-2.
Consequently, since |v| < |v|, the Anisotropic-1 definition
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TABLE 1

Maximum Relative Pointwise Errors for
Anisotropic SU/PG Test Case

Maximum relative

pointwise etror
Finite element method

(10 > 10 grid) Boundary layer Interior
Modified artificial diffusion 19.8% 14.2%
Anisotropic-1 SU/PG 36.5% 14.4%
Anisotropic-2 SU/PG 16.1% 31%

gives a 7, value too low to fully eliminate the Galerkin oscilla-
tions near the sharp boundary layer at y = 1. Note that the
Galerkin solution on such a coarse mesh exhibits large-scale
oscillations throughout the domain, and so the results will not
be presented.

IV.B. Nonorthogonal Mesh Tests

Because the physical boundaries of the plasma scrape-off
region are typically not parallel or perpendicular to the poloidal
magnetic field lines, the capability for nonorthogonal physical
meshes is desirable, which is one reason for developing a finite
element approach to the problem. The weighted residual deriva-
tion of the discrete equations involved only integrals over ele-
ments; no assumptions about the element shapes were made.
Since the numerical integration scheme first maps an arbitrary
quadrilateral element to a standard bi-unit square element, non-
orthogonal elements are handled the same way as rectangular el-
ements.

To verify the validity of non-rectangular elements, two test
cases were devised in which the transport is strongly directional.
Under these conditions, any artificial namerical transport intro-
duced by a nonorthogonal mesh would be easily detected in
the finite element solution, when compared with an orthogonal
mesh solution. For the purposes of both tests, the ion energy
equation solver was used.

Diffusion-Dominated Test Case

The first test, Case N1, involves conduction only, so that the
eqguation being solved is

Ki—+ kl—=SL. (35)
x

The choice of boundary conditions was 7; = 0 on all boundaries.
An energy source was chosen to be localized near the center
of the mesh. If (x., y.) are the coordinates of the geometric
center of the domain, then

(x—xP+{(y—y)
(0.02)?

S E(x, ¥) = 1.0 X 10-®exp — [ ], (36)
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FIG. 1. Case NI, T; vs y, element edges skew to the x-direction.

where §} has the units of J m™s ™. The conductance parameters
used were ki = 1.0 m7's™ and «} = 1.0 X 107 m™'s7,
implying that the resulting T; contours should be wide in the
x-direction and very narrow in the y-direction.

A series of 40 X 40 Galerkin finite element meshes was
applied to Case N1. In all cases the mesh was uniform in the
x-direction, but elements were strongly concentrated near y =
0.5. The angle of the element edges to the x-axis was varied
from 90° down to 45°, For this situation, in which all elements
have two edges aligned with the dominant transport direction,
the temperature profile is observed to remain essentially un-
changed as the mesh angle proceeds from 90° to 45° The
maximum values of T; remain within ~0.06% of the orthogonal
mesh value, and the maximum pointwise difference in the finite
element solutions is 2.1%.

A much different situation occurs when the dominant diffu-
sive transport direction is skewed to the element edges. A series
of 40 X 40 meshes was applied to Case N1 with «{ = 1.0 X
107" m™'s™ and «i = 1.0 m™~’s™", and the strotgly anisotropic
physical diffusion causes a profound spunous diffusion when
nonorthogonal elements are used. Figure 1 displays the T; profile
for 907, 75°, 60°, and 45° meshes, showing a progressive damp-
ening of the peak and widening of the distribution. Therefore,
for diffusion-dominated problems in which the diffusion tensor
15 highly anisotropic, the finite element methods investigated
here require that element edges be approximately parallel to
the dominant transport direction to yield an accurate solution.

Convection-Dominated Test Case

The situation is quite different when convection is the domi-
nant mode of transport, because this is precisely the condition
for which the SU/PG method was designed. For Case N2, a
convection-dominated situation is created with v = 1.0e, ms™',
k)= ki =10 X 107 m %", and discontinuous inflow bound-
ary conditions introduce an internal layer into the solution.
Figure 2 displays the problem defined for a 20 X 20 orthogonal
mesh, as well as the SU/PG solution, which is nodally exact.
Another finite element mesh was applied to the equivalent
problem in which the domain and element edges have been
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FIG. 2. Case N2, Problem diagram and exact solution on 90° mesh.

shifted from 90° to 60°. The exact solution is still a pure convec-
tion in the y-direction of the inftow boundary conditions, which
in this case implies an internal layer skew to the mesh. Figure
3 displays the situation modeled as well as the SU/PG solution
plotted on the 20 X 20 mesh. In this case, the application of
a nonorthogonal mesh o this numerically difficult problem
introduces no excessive spurious crosswind diffusion, with only
localized oscillations.
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FIG. 3. Case N2. Problem diagram and SU/PG solution on 60° mesh.
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FIG. 4. Domain geometry for the plasma/nentral solution.

For typical edge plasmas, transport along the magnetic field
is dominant, whether it be diffusive or convective. Orthogonal
meshes created for use with existing plasma edge models always
align themselves with the poloidal magnetic field to the extent
possible. The divertor plate or limiter blade boundary is gener-
ally not normal to the magnetic field, causing problems for
orthogonal mesh models. In the region near the divertor or
limiter, the plasma is accelerating to the local soundspeed, so
that parallel convection is the dominant process. The Petrov—
Galerkin finite element methods (SU/PG) allow the use of
nonorthogonal meshes in such regions to accurately model the
physical boundary, as demonstrated by Case N2. Away from
the divertor or limiter boundary, where (anisotropic) diffusion
may dominate, an orthogonal finite element mesh is easily
aligned with the preferred transport directions (along B, and
L 8y).

1V.C, Self-Consistent Plasma/Neutral Solution

Once the single-equation tests described in Sections IV.A and
IV.B were complete, the system of four plasma conservation
equations was solved self-consistently on a rectangular AS-
DEX-like domain, and the results were compared to an identical
B2 run. The Braginskii formulas were emptoyed for parallei
transport coefficients and cross-fteld coefficients were chosen
as in [2]. The finite element results agree well with the B2
solution, differing at most by about 10% when compared point-
wise. This test case also verified the Newton iteration method
(including reduced J evaluation and mesh sequencing) and the
GMRES linear system solver.

The next step is 1o couple the one-energy group neutral
diffusion equation to the plasma equations. The computational
domain is the rectangular region bounded by the poloidal mid-
plane, divertor plate, first wall, and separatrix depicted in Fig.
4, All of the plasma ions incident on the divertor plate return
as neutrals, and the flow of plasma particles across the separatrix
is balanced by the flow of neutrals out the & = 0.9 boundary.
The additional parameters D, = 2.0, m, =02mn, k.=
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0.2 n, ki =4 n, 6 =2.5,and By/B = 0.06 were used. Consistent
with the Braams analysis of this case, the following prescrip-
tions were made for the neutral recycling model:

{a) & = 5 eV/ionization (ion energy gain)

{(b) & = —25 eV/ionization (electron energy loss)

() (ov), =3 X 107%a%(3 + a?), where a = T, (eV)/10

(d) {ov), = 1 X 1074713

(&) m = 1.5 m,(where m, is the proton mass, representing
an equal mixture of hydrogen and deuterium)

Boundary conditions on the plasma quantities remain essen-
tially as shown in Fig, 4, aithough the following modifications
are made for the private flux, first wall, and divertor plate
boundartes for comparison with published BZ and NEW-
EDGE results:

(a) B2 boundary conditions:
Private fux: VI, = VT, = (
Fisstwal /=T, =2eV far 0 =x =075 m)
Divertor plate: ¢, = §nuT, + § mauC3, 8, = 4.0.
{by NEWEDGE boundary conditions:
Private flux: VT, = TJ/A, VT, = T,/A, where A 15 the
density gradient scale length [3]
First wail: VI, = VI, = 0
Divertor plate: ¢; = SnauT;, 8, = 4.5. (To be consistent
with NEWEDGE, ion kinetic, and viscous effects are omitted
from the ion energy balance completely.)

A sertes of graded finite element meshes was applied to the
problem using the SU/PG (Anisotropic-2) method. The first
mesh, for which uniform initial estimates of r, wy, T3, 7., and
1, were used, is the 14 X 5 mesh displayed in Fig. 3. Succeeding
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FIG. 5. Initial 14 X 5 finite element mesh for the plasma/neutral solution.
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FI1G. 6, Residual vs Newton iteration for the plasma/neutral solution on
28 X 10 mesh,

meshes (e.g,, 28 X [0 and 56 X 20) were constructed with the
interpolated solution from the previous mesh nsed as the initial
solution estimate. In all cases bilinear shape functions and 2 X
2 Gauss quadrature numerical integration were employed.

Figure 6 displays the typical Newton convergence behavior
for the consistent solution of the full plasma/neutral system of
equations, in this case for the 28 X 10 mesh. This case required
440 s on the Cray-2 C-machine at the National Energy Research
Supercomputer Center, with the vast majonty of the computing
time spent on numerical evaluation of the Jacobian matrix. The
GMRES linear solver is quite efficient and accounts for a small
portion (<10%) of the total computing time. Future optimiza-
tion efforts should therefore aim at streamlining the Jacobian
evaluation or limiting the number of evaluations.

Figures 7 and 8 display the SU/PG solution contours for ion
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FIG. 7. Jon density contours for the plasma/neutral solution with NEW-
EDGE-like boundary conditions (contour increment = 5.0 X 10% m™3).
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FIG.8. Electron temperature contours for the plasma/neutral solution with
NEWEDGQGE-like boundary conditions (contour increment = 5 eV).

density and electron temperature calculaied on a 56 X 20 mesh
for the case with NEWEDGE plasma boundary conditions. The
ion density exhibits a sharp increase directly in front of the
divertor plate due to the highly localized neutral particle recy-
cling zone, while electron temperatures show the rapid decrease
from the x-peint to the divertor plate indicative of localized
neutral recycling. The changes in physics and boundary condi-
tions from the NEWEDGE-like case to the B2-like case mani-
fest themselves in the self-consistent plasma solution, seen in
the density and electron temperature contours of Figures 9
and 10. The imposition of low temperature essential boundary
conditions at the first wall leads to the production of a relatively
large region of recirculating flow and thus lowers the peak ion
density near the plate.

Table II displays the near-plate quantities computed by the
finite element code, B2, and NEWEDGE for this case. The
finite element and NEWEDGE results reveal that the peak
density occurs about 2-cm upwind of the divertor plate, for
which the NEWEDGE central differencing solution gives 9.0
% 10" m™* compared to 8.8 X 10" m™ from the finite element
code. Turning to the B2 comparison, the 30% discrepancies
between the codes are acceptable considering that the B2 code
uses a much simpler analytic neutral particle model. It should
also be noted that the published B2 values were the result of
a two-species (deuterium and hydrogen) calculation, while the
finite element code modeled one ion species with the average
mass of D and H.

The purpose of this test case for the finite element code
was to demonstrate its performance for both sets of boundary
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FIG. 9. lon density contours for the plasma/neutral solution with B2-like
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conditions appearing in the published results of B2 and NEW-
EDGE. Given the proper boundary conditions, the finite element
code agrees qualitatively and quantitatively with both the NEW-
EDGE and B2 codes. Finally, this also points out the real
differences between the cases modeled by Braams and Knoll,
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FIG. 10. Electron temperature coniours for the plasma/neuiral solution
with B2-like boundary conditions (contour increment = 5 eV),
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TABLE 11
Comparison of Near-Plate Results for B2, NEWEDGE,
and Finite Element Codes
Peak T T, Peak
Code n(m™ V) (eV) g (MW/m?)
NEWEDGE 9.0 X 10°® — — i.75
Finite
element 8.8 x 10" 147 5.0 1.42
B2 5.5 X 10”® 13 19 2.9
Finite
element 4.6 X 10® 9.1 22.0 213

and so in comparing edge plasma codes, the physical situations
modeled must be as similar as possible to yield meaningful in-
formation.

IV.D. Effect of Angled Divertor Plates

The situation in which the boundary is orthogonal to the
poloidal magnetic field lines never occurs in realistic divertor
or limiter configurations, and this fact was a primary motivation
for developing a finite element edge plasma model. An ad hoc
sclution to this problem is o scale the calculated piasma heat
flux to the divertor plate by the sine of the angle between the
poloidal magnetic field lines and the divertor plate surface, The
finite element method is capable of representing the nonorthog-
onal divertor boundary accurately and therefore treat the prob-
lem more consistently.

To investigate the consequences of inclined divertor plates,
the physical problem of Section IV.C is recalled, so that the
geomeltry, transport coefficients, and boundary conditions re-
main as described for the NEWEDGE-like case. The results
from the case in which the divertor plate is normal to B, will
be compared with the results from simulations in which the
divertor plate/separatrix angles are +60° and —60°. Figure 11
illustrates the domain geometry for the three divertor plate in-
clinations.

The primary influence of the divertor plate inclination ap-
pears in the neutral particle balance, through the plate recycling
boundary condition. Neutrals formed at the plate are effectively
emitted normal to the divertor plate, so that the +60° divertor

Divertor plate angle:
90°
Y T
\ /
B N | /s
—>%9 60 | [/ +60
14
Separatrix Strike point

FIG, 11, Domain geometry for the angled diverior case.



312

1.8 10*"

1.6 10°*

)|
—c—n (60 dep)
| o060 depy -4

1.4 10*°

1.2 16*°

1.6 1020
3.0 10"°
6.0 10"
4.0 10"° ! ; ;
2.0 10'* | l 1—

0.00 0.01 0.02 .03
y {m) along divertor plate

0.04

FIG.12. Ion density profile at divertor plate for the angled divertor case.

shifts the ionization peak outward from the separatrix, while the
—60° divertor tends to focus the neutrals toward the separatrix.

Figure 12 displays the ion density profile at the divertor plate
for the three divertor plate orientations. While the strike point
density is reduced by 23% from the 90° to 60° divertor plate
solutions, the —60° divertor resuits show a factor of 2.5 increase
in density. The changes in plasma density distributions near
the plate also affect the ion and electron temperatures and thus
the heat flux to the divertor surface. Figure 13 displays the heat
flux normal to the divertor plate surface for the three plate
angles. Also shown as a dotted line is the 90° divertor heat flux
scaled by the sin 60° geometric factor which would be applied
to calculations from an orthogonal boundary model. The —60°
divertor plate drastically reduces the totai divertor heat flux in
this simulation. This is due to a combination of the private fux
temperature scale-length NEWEDGE-like boundary condition
and the density dependence of the anomalous cross-field con-
ductances, x¢and «,. As the density along the private flux
boundary increases, the cross-field thermal conductivity of the
plasma increases and more energy is allowed to escape across
the separatrix, thus reducing the energy transported along the
field iines to the divertor plate. The focusing of the ion density
toward the separatrix seen with the —60° divertor serves (o
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FIG. 13. Heat flux profile at diverior plate for the angled divertor case.
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increase the importance of the private flux boundary condition,
and a more realistic simulation would extend the mesh beyond
the separatrix to a physical wall to eliminate the temperature
scale-length assumption. Nonetheless, the divertor plate angle
directly affects the neutral ionization source and thus impacts
the ion density buildup near the plate which is eritical in distrib-
uting the plasma energy content. The effects of irregular bound-
ary geometry (e.g., angled diverfor plates) on the entire edge
plasma/neutral system must be incorporated in a self-consistent
way, as has been accomplished with the finite element model.

Y. SUMMARY AND FUTURE WORK

To yield an accurate approximate solution fo the plasma
conservation equations which contain significant first deriva-
tives, the modified artificial diffusion and streamline-upwind/
Petrov—Galerkin (SU/PG) finite element methods have been
implemented. Anisotropic upwind weighting provides a means
to numerically stabilize the anisotropic convection-diffusion
behavior of the edge plasma. The standard Galerkin method is
adequate to model the one-energy-group neutral particle diffu-
ston equation. The finite element method transforms the system
of plasma/neutral equations into a nonlinear system of algebraic
equations, which is solved by a damped modified Newton itera-
tion scheme.

As with any new computational model, the finite element
plasma edge code has undergone several phases of testing de-
signed not only to debug it but to identify its capabilities and
limmitations. Tests in which highly anisotropic convection-domi-
nated transport is modeled on & nonorthogonal mesh confirmed
the ability of finite elements to represent the irregular boundary
geometry of the edge region. A test case attempting to reproduce
published B2 and NEWEDGE results succeeded in benchmark-
ing the finite element code to both sets of results independently,
as well as highlighting the importance of boundary conditions in
determining the compuied solution. Finally, the self-consistent
modeling of inclined divertor plates pointed out the importance
of boundary geometry and showed that the angling of divertor
plates introduces effects more pronounced than just a lincar
reduction in the particle and energy fluxes 10 the plate.

Specific near-term modifications to the finite element code in-
clude:

(a) an improved neutrals model such as a two-group treat-
ment including charge-exchange (fast) neutrals and wall-re-
leased Franck—Condon (slow) neutrals,

(b) implementation of a nonorthogonal grid generator
which utilizes magnetic geometry and smoothly incorporates
the actual plasma-facing surface boundary, and

(c) formulation of the weighted residual statements to di-
rectly incorporate the (R, Z) geometry provided by the nonor-
thogonal grid generator of item (b) and avoid the translation
to x—y geometry.

The solution to the problem of dealing with irregular boundary
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geometry is offered by finite element methods. However, many
other improvements and additions {such as consistent houndary
conditions, impurities, noncorenal radiation, and cross-field
transport models) are needed before a truly satisfactory edge
model is available,
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